The main objective of this course is to acquaint the students with the basic concepts about the programming principles of boundary element method. The students will learn the procedures in developing a boundary element formulation for specific engineering problems and with the obtain formulation; they will be able to program specific problems to solve given tasks.

Students will learn the basic principles of developing a boundary element formulation for a given specific engineering problem. Students will be able to design and implement a boundary element program for a given problem. Students will be acquainted with the challenges of numerical programming, e.g., numerical evaluation of singular integrals and special techniques to evaluate the Cauchy principal and Hadamard Finite Part integrals. Students will be able to implement pre and post processors for boundary element analysis programs. Students will acquire a new insight to numerical solution of boundary value problems.

Topics include:

Vector calculus; boundary value problems in mechanics; general outline of boundary element formulation; direct and indirect formulations; discretization – elements and integration; assembly and solution techniques; advanced techniques – dual reciprocity and multiple reciprocity, substructuring and boundary element-finite element coupling; parallel programming in boundary element method